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ABSTRACT

Buckling of a through girder generally is predicted by the so called U-frame approach which treats the
compressed top flanges as compression members restrained elastically by the web stiffness. This study
used a line-type finite element analysis to examine buckling behaviour of through girders, both a single
span girder and a continuous girder. The elastic buckling loads were plotted for a range of span to
height ratio.
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INTRODUCTION

Through girders provide  an alternative design for
bridges where a substructure below the deck may
be prohibitive because of clearance requirements.
Normally they comprise a fabricated I-section
girder, with the cross-beams supporting any deck
arrangement being attached to the bottom flange,
as shown in Fig.1. The girders may be simply
supported or continuous over internal supports.
This study investigates both cases.

A major design consideration for through girders
is instability of the top flange, which is subjected
to compression. The compressed flanges are forced
to buckle laterally. The buckling mode must
necessarily be distortional [1], since the top flange
is restrained only by the stiffness of the web,
while the bottom flange is restrained against
translation and some twist by the cross-beams. A
typical distortional buckle is shown in Fig.2 in
which the web distorts in its cross-section during
buckling.

Figure 1. Cross Section of Through-Girder
                                                                                                    

Note: Discussion is expected before May, 1st 2000. The
proper discussion will be published in “Dimensi Teknik
Sipil” volume 2 number 2 September 2000.

Figure 2. Distortional Buckling Mode

Figure 3.  Discrete U-Frame

Since the webs of a through girder are often
slender, vertical transverse stiffeners may be
required to prevent buckling of the web in shear
[2]. Moreover, web yielding and buckling in
bearing will generally be alleviated by providing
stockier load bearing stiffeners at the supports.
The transverse cross-section through a stiffener is
often referred to as a “discrete U-frame”, shown in
Fig. 3 as opposed to the section between these
stiffeners, shown in Fig. 1 which is referred to as
a “continuous U-frame”.

The U-frame model was considered in a practical
bridge study by Jeffers [3]. Using this method, the
top flanges are modelled as compression members,
restrained elastically against translation by the
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web flexibility. The flexibility of this restraint can
be obtained by applying a pair of equal and
opposite unit forces at the top flange level, as in
Fig.4 and calculating the deflection ∆  per unit
length accounting for web flexing and bending
rotation of the cross-beams. This is a conservative
model, because in the real flange, the compression
force decreases rapidly with distance from
midspan. Moreover, there is tensile force in the
flange over the internal support for continuous
girder, and this resists the buckling [4].

Figure 4. Flange Flexibility ∆∆

Figure 5. Laterally restrained pin-ended strut

Figure 5 shows a laterally restrained pin-ended
strut subjected to a uniform  compression force.
An approximate solution can be obtained by
assuming a sinusoidal buckling mode. Hence, it
can be shown that the elastic critical load is  [5]
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Equation 2 thus forms the basis of a design
method for calculating the elastic critical stress
(σcr)min = (Ncr)min/bftf in the top flange.

The above U-frame model is conservative since it
is assumed that the top flange is uniformly
stressed and it ignores the twist restraint
provided by the web to the flange and also discrete
U-frames. Svensson [6] analysed the strut as

elastically restrained and subjected to several
different longitudinal variations of compression,
reflecting different distributions of bending
moment along the girder. Because the beam cross
section is uniform, the variations of compression
force can be obtained by scaling the bending
moment diagram by a constant.  After setting up
the differential equations for buckling of the strut,
Svensson [6] solved these numerically to obtain
the critical force (Ncr)min in non-dimensional
tabular form as a function of the elastic restraint
(1/∆) and distribution of bending moment. The
method was subsequently refined by Williams and
Jemah [7]. They presented various curves that
give the lowest critical buckling load based on
bending moment distributions and combinations
of end conditions.

The U-frame model, despite being a useful
structural idealization, is inaccurate and  unable
to adequately model discrete U-frames that occur
at positions of web stiffeners. In order to overcome
these limitations, an efficient and accurate line-
type finite element analysis of distortional
buckling developed some time ago by Bradford
and Trahair [8] is augmented herein to include
the elastic translational and torsional restraint
provided to the bottom flange of the girder by the
stiffness of the cross-beams. This element without
the proposed augmentation has proven to be
efficient for studying a variety of distortional
buckling problems [1].

FINITE ELEMENT THEORY

General

The finite element deployed for this study has
been outlined fully by Bradford and Trahair [8],
and only a very brief summary is given herein.
This model differs from the more usual finite
element model of beams [9] in which the beam-
column element is developed by idealizing the
flanges as individual line elements, and the web
as a two-dimensional element that may distort as
a cubic curve in the plane of the cross section.
The way in which the element is augmented to
model through girders is then presented.

Figure 6 shows an elastically restrained cross-
section of a beam or line element, which displaces
uT at the top and uB  at the bottom flanges and
twists φT  and φB  at these flanges during buckling.
These displacements are represented as cubic
polynomials in terms of the nodal degrees of
freedom.
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{q} =  < uT1,uT2, u’T1,u’T2,  uB1,uB2, u’B1,u’B2,φT1,φT2,
φB1,φB2 > T         (3)

where φT  and φB  are written as linear departures
from the average twist (uT-uB)/h and primes
denote differentiation with respect to the
longitudinal coordinate Z.

The elastic strain energy U in the unrestrained
element produced by the buckling displacements
can be written as

U = ½ {q}T[k]{q} (4)

while the bending moments and shears move in a
conservative fashion [10] with the buckling
displacements and do work

V =  ½{q}T λ [g]{q} (5)

where λ = the buckling load factor. The matrices
[k] and λ [g] in Eqs. 4 and 5 are the stiffness and
stability matrices respectively, and have been
given explicitly by Bradford and Trahair [8].
Additional stiffness matrices for restraints are
developed in the following.

uT

kZT                ktT

  φT

         kZB            φB

ktB

                                                                               uB

           Restraints and displacements

Figure 6.  Line Element

Strain Energy Stored in Restraints

The elastic restraints shown in Fig. 6 inhibit
lateral displacements of the top and bottom
flanges with stiffness ktT and ktB per unit length
respectively, and inhibit the top and bottom twists
with stiffnesses kzT  and kzB per unit length
respectively. The elastic strain energy stored in
these restraints is thus [10]

ktT 0 0 0

0 ktB 0 0

Ur = ½ ∫
L
0

}u{ T 0 0 kzT 0 {u} dz       (6)

0 0 0 kzB

in which {u} = < uT, uB, φT, φB >T. Upon expressing
{u} in terms of the nodal degrees of freedom {q}
and performing the integration, the strain energy
stored in the restraints may be expressed as

Ur = ½{q}T[kr]{q} (7)

in which [kr] is the restraint stiffness matrix.

Strain Energy Stored in Discrete U-Frame

In formulating the elastic strain energy U in Eg.
4, one of the components is the strain energy
stored in the deformable web due to its plate
flexure in the plane of the cross section, and is
given by
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where uw is the buckling displacement of the web
which may be represented in terms of the vector
{u} in Eq. 6 and hence {q} in Eq. 3, by using
displacement and slope compatibility at the
flange-web junctions. If distortion of the web is to
be fully suppressed, as would occur at a position of
a stiff stiffener in a discrete U-frame, the term
UwF in Eq. 8 should approach infinity [11]. Hence
a stiffener strain energy may be written as

Us = ( γs - 1 ) U wF (9)

where γs = a restraint factor (≥1), and the
subtraction of unity in Eq. 9 is because UwF is
already included in Eq. 4. Equation 9 may
therefore be written in the form

Us =  ½ {q}T ( γs-1) [ks]{q}   (10)

where [ks] is the stiffener stiffness matrix for a
stiffener over a short element length L in the
integration limit in Eq. 8. If bs is the web stiffener
width, then  γs may be expressed as [9]
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Clearly if there is no stiffener in this short
element, then bs = 0, γs =1,  Us = 0 and the strain
energy resulting from web distortion is merely
UwF in Eq. 8 is included in Eq.4.

Buckling Solution

Each element in  the girder is assigned elastic
restraint stiffnesses ktT,  ktB, kzT and kzB and a
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stiffness γs. The work done during buckling is
thus, from Eqs. 4,7,10 and 5

½ {q}T ([k]+[kr]+( γs - 1) [ks]- λ[g]){q}

From the usual considerations of equilibrium and
compatibility at the nodes, the matrices [k], [kr]
and (1-γs)[ks] for each element may be assembled
into the global stiffness matrix [K], while the
stability matrices λ[g] for each element may be
assembled into the global stability matrix λ[G].
The total work done during buckling of the whole
girder Π is thus

Π = ½ {Q}T([K]-λ[G]){Q} (12)

where {Q} = the global buckling degrees of
freedom assembled from the {q} vectors for each
element. Minimising Π with respect to the vector
{Q} in accordance with the Ritz method yields the
familiar buckling equation

 ∂ Π
 = ([K] - λ [G]}){Q} = {0} (13)
∂ {Q}

which is solved in this study for the buckling load
factor or eigenvalue λ and buckling mode shape or
eigenvector {Q} by deploying standard
eigensolvers, such as that outlined by Hancock
[12].

Validation of Solution

The finite element method has been validated
against closed form solutions for lateral torsional
buckling when the elements are each considered
to have a large value of γs, so that a condition of
suppressed distortion is realised while
maintaining a web thickness tw [11]. In addition,
the ability of the model to handle conditions of
large buckling-induced web distortions has been
demonstrated by a comparison with test data [1].

BEHAVIOUR OF A THROUGH GIRDER

General

A through girder with dimensions h = 1500 mm,
bf = 250 mm, tf = 25 mm and with tw = 10 mm or
15 mm has been studied. The lengths were chosen
to give the ratio L/h of 10, 15, 20, 25, and 30. In
the continuous girder these length were employed
for one span length. Each girder was assumed to
be subjected to a uniformly distributed load to
represent an adverse bending moment
distribution. The behaviour of single span girders
under uniform moment  were also examined. The
bottom deck was represented by setting uB, u’B
equal to zero because of the restraint provided by

the deck. The finite element distortional buckling
analysis has also been used to study  the effect of
different end conditions on the buckling of
through girders. These  end  conditions are
deployed by setting uT = 1, u’T = 1,uB = 0, u’B = 0,
φT = 1, φB = 0 at the ends which allows top flanges
to move laterally at the ends, these degrees of
freedom were also applied to the other internal
nodes.  If the top flange are not allowed to move
laterally (fixed) the degrees of freedom were set to
uT = 0, u’T = 1,uB = 0, u’B = 0, φT = 0,φB = 0 at the
ends and the internal nodes were as previously.

Buckling of The Unstiffened Girders

Figures 7 and 8 show the buckling loads for single
span girder under uniform moment for web
thickness (tw) equal to 10mm and 15mm,
respectively. The dimensionless buckling load is
the ratio of the elastic distortional buckling load
factor  λcr to the load factor for the lateral-
torsional buckling λob . The curves obtained from
Svensson [6] show conservatism compared to the
finite element results. This is because Svensson
does not take the web into account in his analysis.

Figures 9 and 10 show the buckling loads under
uniformly distributed load for a simply supported
girder, while  figures 11 and 12 show the
continuous girders. The lateral-torsional buckling
load λob was found by setting the degree of freedom
uT = 0, u’T = 1,uB = 0, u’B = 1, φT = 0, φB = 0 at the
supports and setting all the restraint parameters
equal to 1 at the other nodes. Both twist stiffness
of top and bottom flanges (kzT, kzB) were set equal
to zero. The web rigidity was set equal to 4E + 3
to represent very rigid web, thus the cross section
of the member remain undistorted. The value of
λob  could also be found by [2] for simply supported
girder:
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for continuous girder:
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where EIy and GJ = minor axis flexural and
torsional rigidities respectively, and EIw =
warping rigidity.

The approximate U-frame approach in Eq. 2 was
also applied to the problem. Under a unit force
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applied laterally at the top flange, the web
displaces ∆ as a cantilever by

web

3

EI3
h=∆ (16)

where Iweb = tw³/12. The critical moment is
therefore (Ncr)min x h, where (Ncr)min is determined
from Eq. 2. The critical moments obtained by the
simplified U-frame model are also plotted in Fig.
7-12 with the legend ‘Min’.

Figure 7. Buckling loads for single span girder under
uniform moment for web thickness = 10mm

Figure 8. Buckling loads for single span girder under
uniform moment for web thickness = 15mm

Figure 9. Buckling loads for single span girder for web
thickness = 10mm under uniformly distributed
load.

Figure 10. Buckling loads for single span girder for web
thickness = 15mm under uniformly distributed
load.

Figure 11. Buckling loads for continuous girder for web
thickness = 10mm under uniformly distributed
load.
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Figure 12. Buckling loads for continuous girder for web
thickness = 15mm under uniformly distributed
load.

CONCLUSION

A finite element program developed some time ago
has been used to study the buckling behaviour of
through girders. The girders consist of two
parallel plate girders joined at their bottom flange
level by a deck which provides twist restraint to
the girders.

The elastic buckling loads were plotted for a range
of span to height ratio 10, 15, 20, 25, 30 and web
thickness tw=10mm and tw=15mm. The buckling
loads were compared with conservative model of
U-frame which analyses the problem as a
uniformly compression strut, restrained
elastically by the web. The continuous through
girders were also compared with Svensson’s model
which analyses the strut subjected to compression
force which has been scaled from the bending
moment distribution. Distortional buckling loads
under uniform moment obtained using the
Svensson model overestimate the loads obtained
by finite element analysis. This disparity is
because Svensson does not include the web in his
analysis.

Analysis of a continuous girder shows  a good
agreement between the Svensson model and the
finite element model as the span to height ratio of
the girders increase. However, for small span to
height ratio (<20 for tw=10mm, <15 for tw=15mm)
Svensson overestimates the buckling loads.
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